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Abstract. We report on the evaluation of the distribution of diameters for nanotube samples with a wide
variation of mean diameters. Such results were obtained from a detailed analysis of the radial breathing
mode Raman response and compared to results obtained from an evaluation of optical spectra and X-ray
diffraction pattern. The evaluation of the Raman data needs a well refined analysis as the experimental
analysis exhibits a rather complicated and oscillating relation between response and exciting laser. Both,
an exact calculation where the density of states was considered explicitly and an approximate calculation
were applied. Both models used for the analysis are able to explain several unexpected results from the
experiment such as the oscillating behavior of the spectral moments, unusual discontinuities in the first
moments of the Raman response for excitation in the IR, a fine structure for the response in optics and
Raman, and an up shift of the RBM frequency as compared to qualified ab initio calculations. In detail the
first moment and the variance of the spectra were used for the evaluation of the diameter distribution. To
obtain good results between experimental and theoretical oscillation pattern the transition energy between
the first two van Hove singularities had to be scaled up which is considered as a result from coulomb
interaction of the electrons in the tubular material. On the other hand the analysis does not only allow
to determine the mean value and the width of the diameter distribution but yields also a value for the
average bundle diameters or, alternatively, the strength of the tube-tube interaction. The model used for
the analysis of the Raman data is also appropriate to analyze the optical response, at least for the spectral
range from 0.5 eV to 3.5 eV. The fine structure in the response for the transitions between the three lowest
van Hove singularities is well reproduced and the mean tube diameters and their distribution is obtained
in very good agreement with the results from the Raman analysis. From the X-ray analysis the same mean
values and comparable distributions for the tube diameters were received whereas the bundle diameters
could not be retained with high precision in this case.

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals –
63.20.Dj Phonon states and bands, normal modes, and phonon dispersion – 78.30.-j Infrared and Raman
spectra

1 Introduction

Carbon nanotubes as discovered in 1991 by Iijima et al. [1]
exhibit a multiwall structure consisting of several concen-
tric rolled up graphene planes. Structure and properties
of such tubes are difficult to analyze since contributions of
the various shells mix and can hardly be separated. Only
after a successful preparation of large quantities of single-
wall carbon nanotubes (SWCNTs) by Thess et al. [2] and
later on by Journet et al. [3] and other groups, research
expanded dramatically [4]. The single, rolled up graphene
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plane can be considered as an one dimensional (1D) elec-
tronic systems. Each tube is described by a lattice vector
(n,m) in the graphene plane which turns into the circum-
ference of the tube on rolling up the sheet. n,m are inte-
gers and are called the components of the Hamada vector
or folding vector. Dividing the length of the Hamada vec-
tor by π yields the diameter of the tube. Likewise, n and m
determine the helicity of the rolled up sheet. Within a cer-
tain diameter range a rather large number of tubes with
different helicities is geometrically allowed which yields
an almost continuous distribution of possible diameters.
There is good evidence and wide agreement that for cer-
tain preparation conditions all geometrically allowed tubes
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are grown and any selection comes only from the tube di-
ameter [5–8]. This is agreed even though Raman spectra
and optical absorption exhibit a fine structure which can
be fitted with a rather small number of individual oscil-
lators. These oscillators were ascribed in some early work
to a selective collection of certain tube diameters [9–11]
and could thus indicate selective tube growth. By vary-
ing growth temperature and catalyst tube material with a
mean diameter between 0.9 nm 1.5 nm could be grown so
far [12,13]. In extreme cases where the tubes were grown in
the cavities of a zeolite tube diameters as small as 0.4 nm
have been reported [14].

The electronic properties of the nanotubes are ob-
tained from a zone folding procedure in the graphene
plane. Electrons can accommodate quasicontinuous k-
vectors along the tube axis but are trapped into well
separated k-vectors perpendicular to this axis. The ideal,
defect-less SWCNT thus exhibits typical 1D van Hove sin-
gularities in the density of electronic states (DOS). For op-
tical absorption only symmetric transitions between sin-
gularities from the valence band to singularities in the
conduction band are allowed. The number of singularities
in the DOS scales up with the diameter of the tubes but it
is independent from their helicity. Electronic transition en-
ergies scale with the π-π overlap integral γ0. The value for
the latter is 2.5 eV as calculated for the graphene plane in
a tight binding approximation where only π-orbitals are
considered. For the nanotubes best agreement with ex-
periments has been obtained for a value between 2.9 and
3 eV [8,9,15]. For such values the first two allowed optical
transitions for tubes with a standard diameter of 1.36 nm
will occur at 0.7 and 1.2 eV in semiconducting tubes and
at 1.9 eV for the first allowed transition in metallic tubes.
The positions of the van Hove singularities and thus the
transition energies scale up linearly with the inverse of the
tube diameter [12,16,17].

Experimental values for the tube diameters were first
obtained from X-ray analysis of nanotube bundles [2].
Subtracting a van der Waals distance of 0.3 nm from the
evaluated center to center separation of the tubes a tube
diameter in reasonable good agreement with statistical
values from a TEM analysis was obtained [2]. Also, the
average position of the absorption bands from thin films
have been used successfully to obtain a good estimate for
the average tube diameter [12].

The Raman spectrum of SWCNTs has two important
regions. The first one around 1580 cm−1 is strongly related
to the tangential Raman mode in graphite. The second one
between 140 and 220 cm−1 originates from a radial breath-
ing mode (RBM) and is unique for SWCNTs. Its position
and shape depends strongly on the exciting laser wave-
length as demonstrated for the first time by Rao et al. [18].
This was explained by a photo-selective resonance scatter-
ing of the modes. Each laser selects resonantly those tubes
for which the electronic transitions match best with the
laser energy. Like the transition energies, the RBM fre-
quencies also scale inverse with the tube diameter. Since
the original work of Rao et al. the unusual response of this
line in the Raman spectra has been discussed in several

hundred papers. Ab initio calculations confirmed the 1/d
dependence of the mode frequency [19,20] and yielded an
appropriate factor of proportionality. This has motivated
several authors to use Raman results from the RBM for
the analysis of tube diameters as well. A problem for such
analyzes arises certainly from the large differences in the
average and peak line positions if different lasers are used
for excitation. Only very recently a better understand-
ing for the response of the RBM was obtained from an
extended experimental and theoretical analysis of the re-
sponse [8,17]. The response of the peak position and of
the first and second moments of the spectra were found
in reference [17] to oscillate with the energy of the ex-
citing laser. This oscillation was found to be due to the
macroscopic quantization of the electronic levels as a con-
sequence of the finite size of the tubes in direction perpen-
dicular to the tube axis and due to the distribution of the
states along the tube axis into van Hove singularities. Fur-
thermore, in the latter work a useful approximation was
developed which allowed to evaluate the spectral moments
for the Raman response of the RBM without explicit use
of the joined density of states. This simplified model was
used to determine the mean and the width of the diameter
distribution of a SWCNT sample. The knowledge of the
first and second moment of the spectral distribution for
excitation with only one laser line was demonstrated to
be sufficient for this.

On account of the above described results it was cer-
tainly demanding to check the range of validity for the
two developed models and to apply them to samples with
different mean diameters. In this paper we present there-
fore a detailed version of the mathematical background
for the two models and the pitfalls which must be known
for the evaluation of diameters from the RBM. The ex-
act model which uses explicitly the DOS for all geometri-
cally allowed tubes is related to the approximate evalua-
tion where only the resonance positions are considered as
a continuous distribution. For the evaluation of the first
and second spectral moments the different models yield
almost the same result for standard tubes. Discrepancies
are found for very thin tubes with diameters below 1 nm.
The consequences of the oscillating behavior of the mo-
ments with respect to the energy of the exciting laser are
discussed and the unusual response observed for several
laser lines is explained. The model for the analysis is ap-
plied to nanotubes with 6 different mean diameters. Good
agreement with the experiment is only obtained if the en-
ergies for the two lowest transitions are scaled up by about
10% from their tight binding value. Both, the model which
uses the full DOS and the approximate model are also ap-
plied to interpret spectra for optical absorption and to
derive the mean diameters and their distribution. Almost
the same type of up scale is requested in this case as for
the Raman spectra. The fine structure observed in the op-
tical spectra is well reproduced by the model. Results for
the diameters are found in very good agreement with the
results from the evaluation of the Raman data and from
a detailed X-ray analysis but thin tube material needs a
special treatment. Average diameters of carbon nanotube
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bundles could only be determined from the Raman data
but their quantitative value relies on details of the theory
used for the evaluation. The fine structure in both, the
Raman response and the optical response is found to be
due to a clustering of diameters as a consequence of their
small value.

2 Evaluation of Raman intensities
and spectral moments, basic relations

The evaluation of the Raman spectra was performed in
several steps. First the frequency of the RBM was calcu-
lated using an ab initio program package. Then the density
of states was evaluated for all geometrically allowed modes
between 0.5 nm and 2.0 nm diameter within a tight bind-
ing approximation. With these results a theory for reso-
nance Raman scattering was applied to evaluate spectral
intensities and their moments. Finally, a continuum ap-
proximation is used to evaluate the spectral moments and
to determine the parameters of the distribution function.

2.1 Evaluation of mode frequencies and density
of states

For the evaluation of the mode frequencies νRBM the re-
sults obtained from the Vienna ab initio simulation pack-
age were used as reported previously [20]. The pack-
age allows only to calculate armchair tubes (n = m)
and zigzag tubes (n or m = 0) in the requested diam-
eter range. From an interpolation of the form νRBM =
[239− 5(n−m)]/d(n,m) one can obtain safely the RBM
frequencies for arbitrary helicities. Within the limits of the
accuracy of the calculation and to be consistent with the
various analyzes performed in the present work we have
used a constant value of 234 cm−1nm for the factor of pro-
portionality between the RBM frequency of a single tube
and 1/d.

The RBM frequency is known to be up shifted by in-
tertube interaction in the bundles. Several recent calcula-
tions estimate this up shift to be between 8% and 12% for
typically (10,10) tube diameters [21,23]. From additional
theoretical analyzes this up shift was found to depend on
the diameter of the tubes d and on the number N of tubes
in the bundles [22]. Hence, to obtain best agreement with
details of the analysis we have used

νRBM(n,m) =
234

d(n,m)
+ C2(N, d) (1)

for the RBM frequency in this work. C2 is a function to
describe the tube-tube interaction as discussed in detail
in Section 6.3.

The density of states was evaluated for all geometri-
cally allowed tubes from zone folding the tight binding
band structure

See equation (2) above

where γ0 ≈ 2.9 eV and a = 2.46 Å are the carbon-
carbon interaction energy and the lattice constant of the
graphene sheet, respectively. dR is the greatest common
divisor of (2n + m) and (n + 2m) and q is the sub-
band index extending from {−(n2 + m2 + nm)/dR} to
{(n2 + m2 + nm)/dR − 1}. For each subband k extends
from −π/T to π/T , where T is the length of the unit cell.

The density of sates was evaluated for every 10 meV.
To avoid instabilities in the calculations the resulting di-
vergencies were cut off at a factor of 100 above their aver-
age value and subsequently smoothed by a 6 point gliding
average. This procedure considers the finite effective width
of the electronic states due to life time effects and spectral
resolution.

2.2 Calculation of Raman intensities and spectral
moments by using the density of states explicitly

For the evaluation of the resonance Raman intensities the
theory of Martin and Falicov [24] is used. The Feynman
diagram yields for the normalized matrix elements of a
one phonon Raman process

K2f,10 =
∑
ji

MfjMjiMi0

(~ω1 − εj − i~α)(~ω2 − εl − i~α)
, (3)

where 0 and f assign the initial state with a photon
ω1 = ωi and the final state with a photon ω2 = ωs and
a phonon ±ν = ω2 − ω1, respectively. The first and the
third matrix element in the equation describe the electron-
photon coupling. The matrix element in the center orig-
inates from the electron-phonon interaction where one
phonon is created, and 1/α is the lifetime of the excited
state. i and j assign intermediate states with and with-
out a phonon. The denominator expresses the resonances
for the incoming and for the outgoing photon. The scat-
tering cross section σ(ωi) is proportional to the absolute
square of the expression in equation (3). In a solid there
is a continuous possibility for transitions from the valence
band to the conduction band which means the sum in
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equation (3) can be replaced by an integral over the joint
density of states gjds(ε) and the scattering cross section
becomes

σ(ωi) ∝
∣∣∣∣∫ MfMphM0gjds(n,m, ε)dε

(~ωi − ε− i~α)(~ωs − ε− i~α)

∣∣∣∣2 (4)

where the three symbols Mf ,Mph, and M0 represent the
three matrix elements from equation (3). For matrix el-
ements which depend weakly on the energy as compared
to the denominators in equation (3) or equation (4) the
triple product of the matrix elements can be removed from
the integral. In this case the spectral intensity for a set of
tubes (n,m) with Gaussian distributed diameters dn,m is
obtained from

I0(ν) =
∑
n,m

{
L(ν, ν(n,m), Γ )exp

[
− (dn,m − d0)2

2σ2

]

×
∣∣∣∣∫ gjds(n,m, ε) dε

(~ωi − ε− i~α)(~ωs − ε− i~α)

∣∣∣∣2
}
· (5)

L(ν, ν(n,m), Γ ) is a line shape function for the phonon
mode of tube (n,m) with width Γ . For the discussion per-
formed below ~α = 0.01 eV was assumed and a Lorentzian
line was used for L. d0 and σ2 are the mean and the vari-
ance of the Gaussian function describing the diameter dis-
tribution of the sample [8,10,17]. The variance is related
to the FWHM as σ2 = FWHM2/8ln2. gjds(n,m, ε) is the
DOS from Section 2.1 with ε replaced by 2ε. Equation (5)
allows immediately to calculate the first moment from

〈ν(ε)〉 =
∫
νI0(ν)dν∫
I0(ν)dν

(6)

and the spectral variance from

∆(ν) = 〈ν2〉 − 〈ν〉2, (7)

both as function of the excitation energy ~ωi. The evalua-
tion of the spectral moments according to the above model
will be assigned in the following as full DOS calculation.

2.3 Continuum approximation of spectral moments

Since the van Hove singularities dominate the spectral re-
sponse one can substitute the explicit DOS function by a
constant value for each tube and thus drop the integration
over the energy in equation (5). Considering only the first
8 transitions we obtain for the first moment

〈ν(ε)〉 =
8∑
j=1

aj+∫
aj−

[νRBM + C2(N, d)] ρ(d) exp[−(d− d0)2/2σ2] dd

8∑
j=1

aj+∫
aj−

ρ(d) exp[−(d− d0)2/2σ2] dd
·

(8)

The integration extends over a range determined by the
upper and lower border lines for each van Hove singularity
which limit the relation between 1/d and ε. For the jth
singularity these borderlines can be evaluated from the
theory of [16] and have the form

aj±(ε) = (2jgjaCCγ0/d)± jaCC/6,

where aCC = 1.44 Å is the C-C separation in the graphene
sheet.

ρ(d) = ∆Z(d)/∆d =
d(n,m)π3

9
√

3a2
CC

(9)

is the continuum description for the density of tube di-
ameters as derived from the total number Z(d(n,m)) of
tubes in a diameter range from 0 to d. gj = 1.1 for j = 1, 2
and 1 otherwise. It is considered as a small scaling factor
to tune the oscillation position and amplitude to the val-
ues observed in the experiment.

The second moments (variances) are evaluated from a
similar relation according to the definition in equation (7).
The evaluation of the spectral moments according to the
above model will be assigned in the following as continuum
approximation.

The described model holds only for not too small val-
ues of σ. A reasonable limit is σ ≥ aCC/3 which corre-
sponds to the smallest width of the integration interval
(±aCC/6 for j = 1).

2.4 Comparison between full DOS and continuum
calculation

To check the difference between full DOS and continuum
calculation an evaluation of the spectral moments was per-
formed for a typical tube with mean diameter of 1.36 nm
and variance σ2 = 0.01. The full DOS calculation yields
a damped oscillation versus excitation energy for the first
and for the second moment. This is demonstrated in Fig-
ure 1a. The noise in the result originates from the singu-
larities in the density of states. Up to 4 oscillations can
be detected before the latter are damped out for excita-
tion in the blue and ultraviolet spectral range. To obtain
the results as plotted the energy scale was up-shifted by
10% and then continuously chirped to obtain un-scaled
energies from 1.6 eV upwards. This process is necessary
to compensate for the influence of gj in the approximate
evaluation of the moments according to equation (8). As it
will be discussed below this rescaling of the tight binding
transition energies is an intrinsic property of the response.

The dashed line in the figure represents the result from
the continuum approximation according to equation (8).
For the first moment the agreement between full DOS and
approximate calculation is very good except that the lat-
ter yields a too large amplitude for the first oscillation.
For the variance the agreement is almost as good except
that for the approximation the first oscillations appear too
sharp and too strong. In both cases the response evalu-
ated for the variance is phase shifted by π/4 as compared
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Fig. 1. Comparison between calculated first and second mo-
ments using the DOS explicitly (full squares) and contin-
uum approximation (dashed line). C2 = 9.5 was assumed in
both cases. For the full DOS calculation a phonon line width
Γ = 2 cm−1 was used. (a) for a distribution with d0 =
1.36, σ0 = 0.1, (b) for a distribution with d0 = 0.9, σ0 = 0.1.

to the first moment. Also, it is important to note that
both, the first moments and the variances are character-
ized by their absolute value, their oscillation frequency and
shape, their oscillation amplitude, their oscillation phase
and by their damping. It means all these quantities are
relevant parameters to be determined in an experiment.

Figure 1b presents the same comparison but for tubes
with 0.9 nm diameter. Obviously the agreement is not as

Fig. 2. Reduced first moment 〈ν〉 = 〈ν(d, σ)〉 − 〈ν(d0, σ0)〉
(a) and reduced variance ∆ν = ∆ν(d, σ)−∆ν(d0, σ0) (b) as a
function of d and σ for a distribution with d0 = 1.36 nm and
σ = 0.16 nm.

good, particularly for low energies. The peaks from the
continuum approximation appear up shifted as compared
to the full DOS calculation. Only for energies higher than
about 2.3 eV both models yield the same result within an
expected experimental error. Thus, as a rough estimate,
for diameters down to 1 nm the approximate model is
reliable for the whole spectral range whereas for smaller
tubes analysis must be limited either to energies larger
2.3 eV or the full DOS evaluation must be used.

2.5 Evaluation of diameters and diameter distributions

For the evaluation of d0 and σ equations (7) and (8) must
be solved simultaneously. Since these equations are highly
nonlinear solubility can be expected if the two equations
depend strongly on d and σ. This dependence can be
checked by studying the two quantities as a function of d
and σ for a known distribution with parameters d0 and σ0.
Figure 2 depicts this response for a particular laser excita-
tion of 1.92 eV in a two-dimensional graph for a distribu-
tion with d0 = 1.36 nm and σ0 = 0.16. The values on the
z-axis represent the evaluated response reduced by the
moments valid for the distribution under consideration.
Thus, the ditch for zero or minimum response represents
the correct solution for d and σ in both cases. Since the
ditch is well expressed a unique solution can be expected
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Fig. 3. First moments and variance for the Raman response of the radial breathing mode versus energy of the exciting laser
for different parameters of the distribution. (a) different values of d0 as indicated; σ = 0.1, C2 = 9.5 cm−1. (b) different values
of σ as indicated; d0 = 1.36 nm. C2 = 9.5 cm−1. (c) different values of C2 as indicated. d0 = 1.36, σ = 0.1.

for this sample. Similar graphs can be obtained for other
laser energies. The ditch becomes rather flat for excitation
with low energy lasers.

As a summary from the analyzes carried out on the
various samples described below in 90% of all trials the
system of the two equation was soluble by Mathematica.
Lack of convergence for the solution was only encountered
for the tube material with the smallest diameter and for
excitation with deep red laser light.

3 Response to the parameters
of the diameter distribution

In order to use the above model for the analysis of SWCNT
material it is necessary to study its response to a wide
range of parameters. Results for excitation with a contin-
uous distribution of laser energies are depicted in Figure 3.
Part (a) exhibits the oscillations of the first moment for
different diameters between 1 and 1.7 nm. As expected the
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mean value shifts upwards with decreasing mean diame-
ter d0. In addition there is a phase shift of the oscillations.
The positions of the first, second, third, etc. maxima shift
to higher laser energies with decreasing tube diameter.
For very small tubes a new peak enters on the low energy
side. From the position of the peaks for the tube with di-
ameter 1.36 nm (dotted line) we can formally correlate
the first, second and third peak with the second and third
transition of semiconducting tubes and with the first tran-
sition of metallic tubes, respectively. Interestingly the os-
cillations become rather flat for excitation energies above
2.5 eV, almost independent from the tube diameter. For
excitation with the Nd:YAG laser (1.17 eV) the response
even from the first transitions in semiconducting tubes
becomes relevant for small tubes and exhibits a giant os-
cillation of 120 cm−1. Similarly, the variance becomes very
large for this laser. On the other hand the discrimination
between tubes with different diameters in the range of 1.2
to 1.7 nm becomes difficult whereas the discrimination of
tubes with smaller diameter is easy. In fact from the graph
one expects a discontinuity of the mean value of the RBM
frequency for tubes around than 1 and 1.2 nm. This is
indeed observed in the experiments as shown in Section 5.

Figure 3b depicts a similar set of response curves for
constant tube diameters but varying second moment. As
one might have expected the oscillations smear out for
broad distributions but they also decrease for very narrow
distributions. In the latter case the peaks in the variance
split into two components.

Finally, Figure 3c exhibits the response to C2 which
characterizes the intertube interaction. The up shift of the
response with increasing intertube interaction is natural
but it occurs without phase shift. This is in contrast to
the shift originating from decreasing diameter. It means
that the up shift of the RBM frequencies as a consequence
of decreasing tube diameter and as a consequence of in-
creasing intertube interaction can be discriminated in the
evaluation.

The quenching of the oscillations for narrow distribu-
tions becomes only significant for values of σ ≤ 0.05 nm.
The evaluation of this behavior can not be obtained
straight forwardly from equation (8) since this equation
holds only for σ ≥ aCC/3 as already mentioned above.
For smaller values of σ contributions from the energy re-
gion between the van Hove singularities can not be ne-
glected. A formal extension of the formula as depicted in
the Appendix allows, however, to include very narrow dis-
tributions in the analysis. The resulting amplitudes of the
oscillations are shown in Figure 4 for two different mean
values of the tube diameters.

The above analysis indicates that the determination
of the mean tube diameter from the first moments needs
some care. The 1/d law may not be valid under certain
conditions. Figure 5 gives an example. The dashed line
represents the 1/d law. The two full drawn lines repre-
sent the connection between the observed first moments
for a particular distribution characterized by 1/d0 and two
different excitation energies. For the IR excitation the de-
viations from the 1/d law are dramatic but even for the
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Fig. 4. Values for the second and the third peak to minimum
amplitude of the oscillations in Figure 3 versus width of the
distribution. (a) mean diameter d0 = 0.9 nm, (b) mean diam-
eter d0 = 1.7 nm. C2 = 9.5 cm−1 was used in both cases. The
third peak in the oscillations in Figure 3 originates from the
first van Hove singularities in metallic tubes.

green laser excitation measurable deviations occur. A dif-
ference between 1/d0 = 0.65 and 1/d0 = 0.7 is significant
in the experiment.
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Fig. 5. Inverse of average tube diameters in nm−1 versus
first spectral moment for a Gaussian distributions with σ =
0.15 nm. Excitation energies are as indicated. The dashed line
represents 1/d = 〈ν〉/234.

4 Experimental

SWCNTs with 6 different mean diameters were prepared
by arc discharge and laser ablation as described previ-
ously in detail [12,13]. The diameters estimated from pre-
vious Raman and X-ray analyzes extended from 0.9 nm
to 1.7 nm. The samples were suspended in toluene and
then drop-coated to form a thick film on a hot silicon sub-
strate (for the Raman and X-ray experiments) or drop-
coated on a hot quartz substrate to form a thin film for
the optical transmission experiments. The obtained films
were annealed at 1000◦ in high vacuum for 12 hours and
then slowly cooled to room temperature. Raman spec-
tra were recorded in the spectral range of the RBM with
7 different laser lines extending from 454 nm to 1064 nm
(1.17–2.73 eV) for all samples. For two selected samples
(smallest and largest diameter) a full set of 30 laser lines
was used for the excitation. The spectral resolution was
2 cm−1 and the measurements were taken at a room tem-
perature. Analysis and detection of the scattered light was
performed with a Dilor xy spectrometer and a liquid ni-
trogen cooled CCD detector. The system was calibrated
for intensities by recording the resonance cross section of
the F1g mode of Si.

Optical transmission was studied for the thin films on
quartz with a Hitachi U3410 spectrometer in the spectral
range between 0.7 and 5 eV with a spectral resolution of
20 meV.

In order to control the analysis from Raman and op-
tical experiments X-ray diffraction was recorded for all
samples. CuKα from a rotating anode was used together
with a pinhole camera and a 2D position sensitive detec-
tor [25] for scattering vectors between 2 and 18 nm−1.

5 Results

5.1 Raman response of the RBM for selected lasers

As expected from many previous experiments the response
for excitation with different lasers revealed very rich and
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Fig. 6. Raman response of the RBM for 6 different samples;
(a) as excited with a yellow laser at 568 nm and (b) with an
IR laser at 1064 nm (b).

strongly differing spectra for each sample. Figure 6 depicts
two examples, one for excitation with a yellow laser and
one for excitation with the IR laser. In the latter case
the discontinuous jump of the position of the RBM with
changing diameter for small tubes is obvious. In contrast
to this there is very little change on the mean line position
for larger tube diameters. This is exactly as predicted from
Figure 3a. Also, since the shape and width of the spectra
in part (a) of the figure exhibit strong variations they can
not reflect directly the width of the diameter distribution.

A straight forward analysis of the average positions
of the RBM for the 7 laser lines yields a fluctuation up
to 30 cm−1 for the first moment evaluated for one and
the same sample and a corresponding high uncertainty in
the average tube diameter of 15%. In contrast, applying
the above described formalism the diameter of the tubes
could be determined with a much smaller experimental
error which eventually turned out to be of the order of 2%.

The analysis was performed in general by determin-
ing d0 and σ for a constant value of C2 = 9.5 in a first
approximation. A fine tuning was obtained by calculating
the moments for the obtained values of d0 and σ and fit-
ting the oscillations to the experimental points with C2

as a fitting parameter. The resulting curves touched the
experimental points very well. A comparison between ex-
periment and calculation is depicted in Figures 7a, b for
two different samples. The figure clearly demonstrates the
importance of using the oscillatory model. With the new
values for C2 new values for d0 and σ were retained. In
general the applied fitting cycle had only little influence on
the results for d0 and σ but revealed variations in C2. The
final values for d0, σ, and C2 are collected in Table 1 for
the 6 samples, together with the root mean square error
for d0.
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Table 1. Diameters and diameter distributions for single wall carbon nanotubes. N is the number of tubes per bundle as
determined from equation (13) in combination with equation (14) and for c = 0.7. D is the bundle diameter in nm.

Sample Tube Distribution Intertube Tube Coherence Tube Distribution
diameter width σ shift C2 diameter length diameter width σ

and (N,D) (width σ)
(Raman) (Raman) (Raman) (X-ray) (X-ray) (optics) (optics)
[nm] [nm] [cm−1] [nm] [nm]([nm]) [nm] [nm]

RP249 0.94±0.02 0.11±0.04 14 (8.2,5) 0.97 20 (-) 0.94 0.13
RHF3 1.17±0.04 0.14 ±0.03 9 (3) 1.16 25 (0.2) 1.18 0.16
RHF2 1.30 ±0.02 0.14 ±0.02 11 (4) 1.24 25 (0.18) 1.29 0.11
NCKL167 1.39 ±0.01 0.15±0.03 16 (10,7) 1.35 50 (0.07) 1.38 0.11
RPTL33 1.47 ±0.02 0.14 ±0.02 18 (20,10) 1.40 10 (0.18) 1.41 0.12
NiYHK33 1.53±0.02 0.14 ±0.04 20 (44,15) 1.48 25 (0.16) 1.47 0.12
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Fig. 7. Experimentally evaluated first moments and variances
for two different nanotube samples; (a) RHF2 with mean di-
ameter d0 = 1.30 nm, σ = 0.14 nm, C2 = 11 cm−1 and (b)
RPTL33 with mean diameter d0 = 1.47 nm, σ = 0.14 nm
C2 = 18 cm−1. Full drawn lines are from the continuum ap-
proximation.

5.2 Samples with very large and very small diameter

For the samples with largest (NiYHK33) and smallest
(RP249) diameter a full set of 30 laser lines was used to
determine the spectral moments. Results are depicted in
Figure 8. For the sample with large diameter four oscil-
lations waves can be seen. The continuum approximation
fits the four oscillations from the experiment well even
though the oscillation frequency appears a bit too large.
Since in this case as well as for the sample RP249 a large
enough number of experimental data was available a di-
rect fit of the experimental results to the first moments
was performed in addition. Fitting parameters were simul-
taneously d0, and C2. In the case of NiYHK33 results for
d0 were about 4% smaller than those from solving the two
equations (7) and (8). With the smaller values for d0 the
agreement between experiment and calculation improves.

For sample RP249 the smallest diameter of only
0.94 nm was observed but only laser energies larger than
2 eV could be used for the evaluation. Also, plotting the
first moments versus laser energy for the continuum ap-
proximation as well as for the full DOS calculation re-
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Fig. 8. Same presentation as in Figure 7 but for 30 dif-
ferent laser lines: (a) sample NiYHK33 with mean diameter
d0 = 1.53 nm, σ = 0.14 nm, and (b) sample RP249 with mean
diameter d0 = 0.94 nm, σ = 0.1 nm. The full drawn line in (b)
is obtained from the full DOS calculation with γ0 = 2.55 eV.

vealed noticeable disagreement between experiment and
calculation. This discrepancy could only be avoided by
re-fitting the experimental data and including γ0 as a fit-
ting parameter. Very good agreement was then obtained
with a value for γ0 = 2.55, particularly for the full DOS
calculation. Data from this fit are depicted in Table 1.

A comparison between experimental results and calcu-
lation is depicted in Figure 8 for the two samples. Note
that in the case of the sample with the small tube diame-
ters the full DOS calculation was applied to evaluate the
theoretical curve.

5.3 Results from optical absorption

Optical absorption has been used as an alternative tool
to determine SWCNT diameters [11,12]. It was therefore
important to compare results form this technique with the
results from Raman experiments. After recording the spec-
tra for all 6 samples the overall background was subtracted
and the well known absorption peaks for the first and sec-
ond transition for semiconducting tubes and the first tran-
sition for metallic tubes were observed. These spectra are
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Fig. 9. Optical absorption for two different SWCNT samples
as indicated and after subtraction of the background (full line).
Calculated absorption spectra are shown as dashed lines. The
upper two dashed spectra hold for a calculation using the full
set of DOS functions. The lower two dashed spectra hold for
the approximation according to equation (11).

very similar to the absorption spectra reported by Kataura
et al. in [12]. The two higher absorption peaks exhibited a
fine structure as it was also reported before [11]. Results
for two selected samples are depicted in Figure 9 as full
drawn lines.

To obtain the parameters for the diameter distribution
from the experiment one can proceed as in the case of the
Raman experiments. The full set of DOS functions can be
supper imposed to represent the quasi-continuous distri-
bution of nanotubes. Each tube is again weighted with a
Gaussian factor. Assuming constant matrix elements like
in the case of the Raman analysis the absorption is ob-
tained from

α(ε) ∝
∑
m,n

exp
[
− (dn,m − d0)2

2σ2

]
g2
n,m(ε). (10)

Subtracting again the background renders characteristic
peaks for the optical transitions between the van Hove
singularities. Using the same value of γ0 = 2.9 eV for the
π-π overlap and a similar up scaling for the first two tran-
sitions as it was applied in the case of the Raman analysis
one can fit d0 and σ to the experiments. Corresponding
results are depicted for the two tube materials as dashed
lines in the upper part of Figure 9. The calculated spectra
were obtained for d0 = 1.38 nm, σ = 0.11 nm (NCKL167)
and d0 = 1.47 nm, σ = 0.12 nm (NiYHK33), respectively,
in very good agreement with the results from the Raman
experiments. The agreement is not only good with respect

to line position but also with respect to line width and in-
tensity. Similar good agreement was obtained for the other
samples. For the smallest tube PR249 again the value for
γ0 had to be reduced to yield best agreement with the
experiment.

The fine structure in the second and third peak of the
calculated spectra is retained with a very similar shape as
observed in the experiment. Thus, similar to the Raman
spectra it is not smeared out by the overlap from the large
number of tubes considered.

The alternate possibility for the analysis of the optical
spectra is to apply an approximation where only the den-
sity of geometrically allowed tubes is considered weighted
with the Gaussian probability for each tube.

α(ε) ∝
∑
m,n,j

exp
[
− (dn,m − d0)2

2σ2

]
× δ

(ε− εj(n,m))2 + (δ/2)2
· (11)

δ is a small value of the order of 10 meV describing the
finite resolution of the spectrometer and the width of
the resonant electronic states j due to lifetime effects.
εj(n,m) = 2jgjaCCγ0/d(n,m) is the same quantity as
used in equation (8). This means the evaluation is per-
formed in direct analogy to the continuum approximation
of the Raman data. Experimental results can be fitted
again by varying d0 and σ. In the lower part of Figure 9
results are depicted for the same two samples as selected
in the upper part. Agreement with the experiment is even
better than for the full DOS calculation. Similar good
agreement was obtained for the other samples. Results
for d0 and σ are listed in Table 1.

5.4 Results from X-ray diffraction

The traditional method to determine diameters of SWC-
NTs is X-ray diffraction. The diffraction pattern of large
bundles provides insight into the lattice constant of the
hexagonal lattice and can thus give information on the
tube diameter, coherence length (coherent bundle diam-
eter) and diameter distribution. Evaluation of all these
data is only possible if samples are of high quality as it
needs to consider several of the small side bands accompa-
nying the main diffraction peak from the hexagonal lattice
at a scattering vector q = 4.3 nm−1. All samples revealed
reasonably good peaks which enabled a detailed analysis,
except for the material with the smallest tube diameters.
For this material, due to the high background, only one
peak could be identified. The position of the maximum
was used to calculate the tube-tube distance and the tube
diameter by subtracting the Van der Waals distance. In
the raw data a strong increase in scattering intensity can
always be observed for small q. This small-angle scattering
originates from large objects and has to be subtracted by
an appropriate procedure [5,7]. Figure 10 depicts an ex-
ample for sample NCKL167 after this background correc-
tion. Details of the subtraction procedure as well as details
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Fig. 10. X-ray diffraction intensity after appropriate subtrac-
tion of the background (circles). The line is a fit from the
diffraction model. The disagreement between experiment and
fit for the fourth peak is due to model simplifications. The fifth
peak at 18 nm−1 originates from graphitic carbon.

for the following analysis will be described elsewhere [26].
The four diffraction peaks between 4 and 16 nm−1 origi-
nate from the nanotubes in the bundles.

The model used for the evaluation of the diffraction
spectra is based on the following assumptions: The tubes
exhibit an outer radius r1, an inner radius r2 and thus a
wall thickness w = r1 − r2. They are of infinite length,
arranged in a perfect hexagonal lattice and diameters are
subjected to a Gaussian distribution. The mean tube di-
ameter d0 = r1 + r2. The intensity of the Bragg reflec-
tions was calculated by using the model for random layer
lattices [28]. The average intensity of the Debye-Scherrer
rings is then proportional to the following equation, ex-
cluding constants but including the polarization factor
and the Lorentz factor for 2D layer lattices.

I(θ) ∝ cosθ(1 + cos22θ)√
sinθ

×G
(

2L
√
π

λ
(sinθ − sinθ0)

)
F 2(q(θ)), (12)

with

G(a) =
∫ ∞

0

dx exp[−(x2 − a)2].

F is the form factor, L the particle dimension and θ0 the
respective Bragg reflection angle. A Debye-Waller factor
was neglected, as for carbon the intensity reduction in
the whole observed q-range is below 2%. The form factor
for a cylinder is given by the Bessel-function of the first
order [29] and has the form F 2(q) ∝ [r1J1(q, r1)/(qr1)]2/q.
The diffraction from the tube can be evaluated from the
absolute value of the subtraction of two cylinders, one with
the outer and the other with the inner radius of the tube.
The model is similar to the one described by Rols et al. [7],
but is based on the model of layer lattices [27]. Thus, all
peaks can be used for a quantitative description, whereas

the intensities for the higher order peaks were weaker in
the experiments than predicted by the model of Rols [7].
The tube thickness was fixed to 0.08 nm to reduce the
number of free parameters. This value is consistent with
a nanotube of only one wall. The resolution function of
the spectrometer was measured by crystalline powder and
used for modeling the width of the peaks. An additional
broadening was simulated by assuming a distribution of
tube diameters which leads to an increased peak width
for the higher Bragg reflections and is similar to a lattice
distortion. The model with the tube diameter, the tube
distance, the diameter distribution and the crystal size as
four parameters is then fitted to the experimental results.

The first peak determines the center to center dis-
tance of the tubes and can be measured with high pre-
cision. The absence of the (2 0), (3 0) and (4 0) reflections
along the q-axis is the most remarkable point and gives a
strong restriction to the form factor, i.e. it determines the
tube diameter. The width of the higher reflection peaks
increases which is attributed to the size distribution of
tube diameters. In the model, due to geometric restric-
tions larger tube diameters cause larger tube distances,
i.e. the Van der Waals distance is assumed to be a con-
stant. This suggests that within the bundles regions with
larger and smaller tube diameters coexist. A description
by using a mean tube diameter and a mean tube distance,
which would be the consequence if tubes of different size
are completely mixed, does not adequately reproduce the
experimental results. This interpretation is particularly re-
liable for specimen NCKL167, where the narrow diameter
distribution permits such a refined evaluation.

The peak at 18 nm−1 originates from the (002) re-
flection of graphite. Its small width which is even smaller
than the width of the first nanotube reflection, and the
pronounced asymmetry towards small q is typically for
highly oriented (turbostratic) graphitic carbon [28]. As
the area of the graphitic peak is significantly smaller than
the one of the nanotubes, it can be concluded that the
amount of graphitic carbon is significantly smaller than
the one which formed the nanotubes. There exists an ad-
ditional part of amorphous carbon in the specimen, which
could not be determined, since the background from small-
angle scattering and from amorphous carbon cannot be
distinguished with sufficient precision.

The results obtained from the evaluation are shown
in Table 1, columns 5 and 6. Precise values are obtained
for the diameter and the distance (diameter plus Van der
Waals distance) of the tubes. The differences between fit
and experimental results in the wings of the first peak may
be attributed to a non-Gaussian distribution of the tube
diameters. This could lead to a small overestimation of
the fit parameter for σ of the tube diameter distribution.
As the parameter L only slightly influences the fit the
determination of the crystal size is not very accurate.

6 Discussion

The two models developed in this work are the basis for
the analysis of the tube material. Both models have their
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merits. The continuum model is easier to handle and al-
lows a direct analysis of tube diameters, even if only a
small number of laser lines have been used for the exci-
tation of the spectra. In the extreme case of small tubes
or very narrow diameter distributions it suffers from over
simplification. The full DOS model is more elaborate but
holds also for thin tubes. The reduced value of γ0 for small
tubes is really surprising. From hand waving arguments
one would rather expect a further increase of the π-π over-
lap with increasing curvature of the tubes. On the other
hand it is known that σ orbitals increasingly contribute
to the electronic structure of the π system [30] which may
indeed change the electronic response and has some influ-
ence on the van Hove pattern.

The need for the increase of the transition energies be-
tween the first two van Hove singularities must be consid-
ered as intrinsic as it holds for the evaluation of the Raman
data as well as for the evaluation of the optical spectra.
It is most probably due to the shortcomings of the tight
binding approximation which was used for the evaluation
of the band structure (Eq. (2)). In a recent theoretical
analysis by Ando et al. [31] it was demonstrated that the
Coulomb interaction between the electrons in the π-band
leads to exciton levels and to an up shift of the transition
energies between the van Hove singularities. This up shift
is particularly strong for the lowest energy transition and
can reach 20% for a Coulomb interaction of the order of
0.1 eV. This upshift was observed recently from a mis-
match between experimentally observed absorption and
results from tight binding calculations [32].

6.1 Quantum oscillation and diameter distribution

The presented models can explain several unexpected ex-
perimental results. One of them is the oscillation of the
spectral moments which are identified as a quantum size
effect originating from the small dimension in radial di-
rection. The laser energy is swept across the van Hove
singularities and excites oscillating tube diameters to res-
onance. Other unexpected results are the discontinuous
switch of line position for the RBM mode with changing
tube diameter if the excitation is performed with red or IR
light. Oscillations are well expressed for such excitations
whereas for the determination of diameter distributions
blue or green lasers are recommended.

For the Raman as well as for the optical and X-ray
analysis the size of the probe extends over several thou-
sand bundles. Therefore the obtained diameter distribu-
tions should be representative in all three cases. Indeed,
the results from the Raman experiments are in excellent
agreement with results from optics and X-rays. The exper-
imental error for d0 given in Table 1 is a real root mean
square error obtained for the excitation with the various
lasers. The error for σ is of the same relative magnitude.
X-ray analysis yields very reliable data for tube diame-
ters but more details suffer from the strong background
which has to be subtracted. Better samples and even more
refined analyzes might help.
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Fig. 11. Clustering in the distribution of tube diameters for
small SWCNTs and origin of fine structure in the Raman line
for the RBM; a density of RBM frequencies versus RBM fre-
quency (or tube diameter); a sampling width of 3 cm−1 was
applied; b same plot as a but for large tubes. (The left hand
side of the line corresponds to 10 nm diameter or 23.4 cm−1.)
The whole curve was shifted onto the top of curve a by scaling
the x-axis and y-axis to provide immediate comparison. c as
curve a but each tube was weighted with its probability in a
Gaussian distribution of diameters.

Both, the Raman results and the optical spectra reveal
a fine structure which needs some more discussion.

6.2 Origin of the fine structure

In previous work and in the current presentation we have
demonstrated that the full DOS model as well as the con-
tinuum approximation provide a good representation for
the fine structure in the Raman spectra of the RBM and in
the optical absorption spectra. This is still surprising since
the response originates from an overlap of a rather large
number of tubes with only slightly varying properties. The
physical reason for the fine structure can be traced back
in fact to the nanoscopic geometry of the tubes. For such
small entities the distribution of tube diameters is not re-
ally quasicontinuous but exhibits clusters. This is demon-
strated in Figure 11. The figure shows the density of diam-
eters or, more precisely, the density of RBM frequencies
for a certain frequency interval for two selected ranges of
tube diameters. For the small tube as they are usually pre-
pared in nanotube research clustering is evident (curve a).
For large tubes (which have not been prepared so far as
single wall species) the density versus frequency relation
is completely smooth (curve b). If we weight curve a with
a Gaussian distribution we obtain curve c which is almost
a representative for the fine structure in the Raman re-
sponse of the RBM.

The clustering of the RBM frequencies is related to
the clustering of the diameters and the latter correlates
immediately to the clustering of resonance transitions.
This means there is a clustering of resonance cross sec-
tions which certainly further enhances the development of
a fine structure.
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6.3 Bundle diameters and intertube interaction

The stiffening of the RBM frequency by the intertube
interaction was demonstrated by us already in previous
work [8,17]. This effect is fully confirmed here for tubes
with different diameters. The requested up shift of the
frequencies calculated for individual tubes is determined
by the function C2. This function was found by Henrard
et al. [23] to depend on the tube diameter. Evaluating
their data explicitly yields a relation of the form

C2(d) =
(10.3d− 2.3)2.56

d
· (13)

In a recent paper by Henrard et al. [22] it was demon-
strated that C2 depends not only on the tube diameter
but also on the number of tubes in the bundle, at least as
long as the bundles are not too big. Up to about 100 tubes
per bundle can give a selective response. In this case the
value of C2 can provide information on the bundle diam-
eter. The final shift of the RBM mode for infinite large
bundles increases about linearly with the tube diameter.
Considering this findings one can use the following refined
formula for the evaluation of the number of tubes in the
bundle.

C′2(N, d) = cC2(d)a(N)

=
c(10.3d− 2.3)2.56

d

(
1− 1

N0.46

)
· (14)

c is a scaling factor describing the tube-tube interaction in
the bundles (c = 1 for the work of Henrard et al.) explicitly
and a(N) is a function describing the behavior for small
numbers of tubes in the bundle. a(N) was determined
from a best fit to the relation calculated in reference [22].
The fit and a set of relations according to equation
(14) are depicted in Figure 12 for different tube diam-
eters. Using the values for the intertube interaction for
infinitely large tubes from the calculation in reference [23]
the resulting shifts are much larger than the observed up
shifts. This would require very few tubes per bundle in
contrast to various other measurements. The intertube in-
teraction calculated in reference [21] is about 30% smaller
and yields more realistic results in the present case. Even
for this reduced interaction potential the limiting case for
the stiffening is not reached. Therefore equation (14) could
be solved for N for all tubes under investigation using the
observed up shifts. The resulting values for C2 and N are
depicted in Table 1 in column four. From the values ob-
tained for N the bundle diameter can be evaluated from

D = (d+ 0.6)

√
2
√

3N
π

(15)

for a hexagonal arrangement of the tubes. This yields for
the four largest bundles from Table 1: 15, 10, 7, and 5 nm,
respectively. The evaluated diameters for the bundles are
of course only as good as the calculation. A more rapid
saturation for the up shift of the RBM frequency with
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Fig. 12. Relative shift of the RBM frequency in SWCNT bun-
dles as a consequence of intertube interaction. Bullets are as
calculated from reference [22]. The dashed line is a best fit us-
ing equation (14). The full drawn lines hold for d0 as indicated.

bundle diameter was found by Popov et al. [33]. In this
case bundle diameters would be even smaller. A weaker
interaction would yield larger bundles.

Certainly also the constant of 234 cm−1 nm is cru-
cial for the evaluation. A smaller value would result in a
stronger up shift from the tube-tube interaction. Higher
values would reduce the number of tubes in the bundles.
However, as the ab initio calculations from reference [20]
must be considered as very accurate there is little room
for adjustment from this side.

The coherence lengths from X-ray might be a compar-
ative quantity to the evaluated bundle diameters. From
Table 1 they turn out much larger than the diameters eval-
uated from Raman. This is not really surprising. X-rays
sees only the large bundles but never an individual tube or
bundles with two or three tubes. In contrast, Raman scat-
tering records all tubes, no matter how small the bundles
are to which they belong. This makes certainly a differ-
ence.

7 Summary

Raman scattering and in particular the response from the
RBM has again proven to be an excellent tool for the
analysis of SWCNTs. However, to draw the full informa-
tion buried in this response a careful analysis is requested.
The oscillations in the frequency response could be traced
back to the size quantization of the tubes in transversal
direction. The evaluation of the first and second spectral
moment of the radial breathing mode response allows to
determine tube diameters and, if the bundle size is not in
the limit of infinite large bundles, also bundle diameters.
The latter evaluation of diameters relies, however, on the
validity of results from theoretical models. In fact, turning
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〈ν(ε)〉 =

8P
j=1

(Ij + 10−7 ∗
aj+1−R
aj+

[νRBM + C2(N, d)] ρ(d) exp[−(d− d0)2/2σ2] dd

8P
j=1

(Ij + 10−7 ∗
aj+1−R
aj+

ρ(d) exp[−(d− d0)2/2σ2] dd

, (16)

the problem around, from known bundle diameters inter-
tube interaction can be evaluated. The fine structure in
the Raman response and in the optical response is due
to a clustering of geometrically allowed diameters which
again is a consequence of the nanoscopic sizes of the tubes.
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Appendix

The evaluation of the oscillation for very narrow diameter
distributions can be performed from

See equation (16) above

with

Ij =

aj+∫
aj−

[νRBM + C2(N, d)] ρ(d) exp
[
−(d− d0)2/2σ2

]
dd.

(17)

Note that the integration in equation (16) extends over
the regions in between the van Hove singularities. The
factor 10−7 is empirical. For lower values oscillations are
not quenched for small values of σ and for larger values
the calculated diameters disagree with the experiment if
σ is specified in the experimental range.
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